\(Q1.\:\) If \(x+3y=c\) and \(\left(1,2\right)\) is a solution of the equation, then the value of \(c\) is:
\( a) \quad \) \(0\)
\( b) \quad \) \(7\)
\(c) \quad \) \(5\)
\( d) \quad \) \(6\)
\( \text{Answer/Explanation}\)
\(Q2.\:\) \(2x+5=3x+4\) is equivalent to
\( a) \quad \) \(x=1\)
\( b) \quad \) \(2x+1=3\)
\(c) \quad \) \(x+4=5\)
\( d) \quad \) All of these
\( \text{Answer/Explanation}\)
\(Q3.\:\) If the equation of a straight line is \(y=3x+5\), then which of the following point lies on the line?
\( a) \quad \) \(\left(0,0\right)\)
\( b) \quad \) \(\left(0,5\right)\)
\(c) \quad \) \(\left(5,0\right)\)
\( d) \quad \) \(\left(3,5\right)\)
\( \text{Answer/Explanation}\)
\(Q4.\:\) If the line \(4x−3y=11\) passes through the point \((a,3)\), then the value of \(a\) is:
\( a) \quad 3\)
\( b) \quad 6\)
\(c) \quad 0\)
\( d) \quad 5\)
\( \text{Answer/Explanation}\)