Sat Linear Equations Practice Problems

\(Q1.\:\) If \(x+3y=c\) and \(\left(1,2\right)\) is a solution of the equation, then the value of \(c\) is: \( a) \quad \) \(0\) \( b) \quad \) \(7\) \(c) \quad \) \(5\) \( d) \quad \) \(6\) \( \text{Answer/Explanation}\) \(Q2.\:\) \(2x+5=3x+4\) is equivalent to \( a) \quad \) \(x=1\) \( b) \quad \) \(2x+1=3\) \(c) \quad … Read more

Sat Absolute Value Practice Problems

Questions related to basic arithmetic involving absolute values. \(Q1.\quad |-2|=\_\_\_\_ \) \( a) \qquad 2 \) \( b) \quad -2\) \(c) \qquad 0 \) \( d) \qquad \text{Both a and b} \) \( \text{Answer/Explanation}\) \(Q2.\quad -|-3|=\_\_\_\_ \) \( a) \qquad 3 \) \( b) \quad -3\) \(c) \qquad 0 \) \( d) \qquad \text{Both a … Read more

Sat Inequality Practice Problems

\(Q1.\:\) Solve for \( x: 5x-1 \le 3 \) \( a) \quad x \le \frac{5}{4} \) \( b) \quad x \le \frac{4}{5}\) \(c) \quad x \le \frac{2}{5} \) \( d) \quad x \le \frac{5}{2} \) \( \text{Answer/Explanation}\) \(Q2.\: \) if \( \frac{1}{3}x \le 1\) then \( a) \quad x \in (3, \infty) \) \( b) … Read more