Note: This is the Solution of review exercise 4.3 from newly published book by PCTB (Punjab Curriculum and Textbook Board, Pakistan) for new 9th session 2025 Onward.
Exercise 4.3
Question # 01: Find HCF by factorization method:
\((i)\) \(\quad\) \( 21x^2y,35xy^2\)
\((ii)\) \(\quad\) \(4x^2-9y^2,2x^2-3xy\)
\((iii)\) \(\quad\) \(x^3-1,x^2+x+1 \)
\((iv)\) \(\quad \)\(a^3+2a^2-3a,2a^3+5a^2-3a \)
\((v)\) \(\quad \) \(t^2+3t-4,t^2+5t+4,t^2-1\)
\((vi)\) \(\quad \) \(x^2+15x+56,x^2+5x-24,x^2+8x\)
Question 2: Find HCF of the following expressions by using division method:
\((i)\) \(\quad\) \( 27x^3+9x^2-3x-9,3x-2\)
\((ii)\) \(\quad\) \(x^3-9x^2+21x-15,x^2-4x+3\)
\((iii)\) \(\quad\) \(2x^3+2x^2+2x+2,6x^3+12x^2+6x+12 \)
\((iv)\) \(\quad \)\(2x^3-4x^2+6x,x^3-2x,3x^2-6x \)
Question 3: Find LCM of the following expressions by using prime factorization method:
\((i)\) \(\quad\) \( 2a^2b,4ab^2,6ab\)
\((ii)\) \(\quad\) \(x^2+x,x^3+x^2\)
\((iii)\) \(\quad\) \(a^2-4a+4,a^2-2a \)
\((iv)\) \(\quad \)\(x^4-16,x^3-4x \)
\((v)\) \(\quad \)\(16-4x^2,x^2+x-6,4-x^2 \)