Class 9th math 4.3 solution english PCTB

Question 2: Find HCF of the following expressions by using division method:

\((iv)\) \(\; \) \(2x^3-4x^2+6x,x^3-2x,3x^2-6x \)

Solution:

$\displaystyle 2x^{3} -4x^{2} +6x=2\left( x^{3} -2x^{2} +3x\right)$

$\displaystyle x^{3} -2x$

$\displaystyle 3x^{2} -6x=3\left( x^{2} -2x\right)$

$\displaystyle 2$ and $\displaystyle 3$ are not common in given polynomials, so we ignore them and conisder only

$\displaystyle x^{3} -2x^{2} +3x$

$\displaystyle x^{3} -2x$

$\displaystyle x^{2} -2x$

$\begin{array}{ r l }
& \ \underline{\ \ \ \ \ \ \ \ x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
x^{2} -2x & \bigr) \ x^{3} -2x^{2} +3x\\
& \underline{\underset{\ \ -}{} x^{3} \ \underset{+}{-}2x^{2} \ \ \ \ \ \ \ \ \ }\\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3x
\end{array}$

$\displaystyle 3$ is not common in given polynomials, so we ignore it and conisder only $\displaystyle x$

$\begin{array}{ r l }
& \ \underline{\ \ \ \ \ \ \ \ x-2\ \ \ \ \ \ \ }\\
x & \bigr) \ x^{2} -2x\\
& \underline{\underset{\ \ -}{} x^{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
& \ \ \ \ \ \ \ -2x\\
& \underline{\ \ \ \ \ \ \ -2x\ \ \ \ \ \ \ \ }\\
& \ \ \ \ \ \ \ \ \ \ \ \ 0
\end{array}$

$\begin{array}{ r l }
& \ \underline{\ \ \ \ \ \ \ \ x+2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
x^{2} -2x & \bigr) \ x^{3} -2x\\
& \underline{\underset{\ \ -}{} x^{3} \ \ \ \ \ \ \ \ \ \ \underset{+}{-} \ 2x^{2} \ }\\
& \ \ \ \ \ \ \ \ \ \ 2x^{2} \ -2x\\
& \underline{\ \ \ \ \ \ \ \underset{-}{+}2x^{2} \ \underset{+}{-}4x \ }\\
& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x
\end{array}$

$\displaystyle 2$ is not common in given polynomials, so we ignore it and conisder only $\displaystyle x$

$\begin{array}{ r l }
& \ \underline{\ \ \ \ \ \ \ \ x-2\ \ \ \ \ \ \ }\\
x & \bigr) \ x^{2} -2x\\
& \underline{\underset{\ \ -}{} x^{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
& \ \ \ \ \ \ \ -2x\\
& \underline{\ \ \ \ \ \ \ -2x\ \ \ \ \ \ \ \ }\\
& \ \ \ \ \ \ \ \ \ \ \ \ 0
\end{array}$

$\displaystyle \text{ HCF} =x$

Leave a comment