Class 9th math 3.3 solution english PCTB

Question 4: Given that \(f(x)=ax+b+1\), where \(a\) and \(b\) are constant numbers. If \(f(3)=8\) and \(f(6)=14\), then find the values of \(a\) and \(b\).

Solution:

\(f(x)=ax+b+1\)

\(f(3)=3a+b+1\)

\(3a+b+1=8\)\(\ \_\_\_\_\_\_\ (1)\)\(\quad \because f(3)=8\)

\(f(6)=6a+b+1\)

\(6a+b+1=14\)\(\ \_\_\_\_\_\_\ (2)\)\(\quad \because f(6)=14\)

Subtracting equation \((1)\) from \((2)\), we have

\(\ \ 6a+b+1=14\)

\(\underline{\underset{-}{}3a\underset{-}{+}b\underset{-}{+}1=\underset{-}{}8}\)

\(\ \ 3a\ \ \ \ \ \ \ \ \ \ \ \ \ \ =6\)

\(a=\large{\frac{6}{3}}\)

\(a=2\)

Put value of \(a\) in equation \((1)\), we have

\(3(2)+b+1=8\)

\(6+b+1=8\)

\(b+7=8\)

\(b=8-7\)

\(b=1\)

Leave a comment