Class 9th math Review Exercise 3 solution english PCTB

Question # 01: Four option are given against each statement. Encircle the correct option.

\((v)\) \(\;\) If \(A\subseteq B\) and \(B-A\neq \phi\), then \(n( B-A)\) is equal to

\( a) \quad \) \(0 \)

\( b) \quad \) \(n(B)\)

\(c) \quad \) \( n(A)\)

\( d) \quad \) \( n(B)-n(A)\)

Answer: \( d) \; \) \( n(B)-n(A)\)


Explanation:

\(A\subseteq B\) means that every element of set \(A\) is also in set \(B\) i.e. fully inside.

\(B-A\neq \phi\) means that set \(B\) has some extra elements that are not in \(A\).

So, \( n( B-A)=n(B)-n(A)\).

Example:

Let, \(A=\{1,2,3\}\), \(B=\{1,2,3,4\}\)

\(B−A=\{4\}\)

\(n(B-A)=1;\) \(\;\) \(n(B)=4;\) \(\; n(A)=3\)

So, \( n(B-A)=n(B)-n(A))\)

Leave a comment