Class 9th math Review Exercise 3 solution english PCTB

Question 11: Given that \(f(x)=ax+b\), where \(a\) and \(b\) are constant numbers. If \(f(-2)=3\) and \(f(4)=10\), then find the values of \(a\) and \(b\).

Solution:

\(f(x)=ax+b\)

\(f(-2)=-2a+b\)

\(-2a+b=3\)\(\ \_\_\_\_\_\_\ (1)\)\(\quad \because f(-2)=3\)

\(f(4)=4a+b\)

\(4a+b=10\)\(\ \_\_\_\_\_\_\ (2)\)\(\quad \because f(4)=10\)

Subtracting equation \((1)\) from \((2)\), we have

\(\ \ 4a+b=10\)

\(\underline{\underset{+}{-}2a\underset{-}{+}b=\underset{-}{}3}\)

\(\ \ 6a\ \ \ \ \ \ \ \ =7\)

\(a=\large{\frac{7}{6}}\)

Put value of \(a\) in equation \((1)\), we have

\(-2(\frac{7}{6})+b=3\)

\(-\frac{7}{3}+b=3\)

\(b=3+\frac{7}{3}\)

\(b=\frac{9+7}{3}\)

\(b=\frac{16}{3}\)

Leave a comment