Class 9th math Review Exercise 3 solution english PCTB

Question 6: Verify the properties for the sets \(A\), \(B\) and \(C\) given below:

\((c)\) \(\;\) \(A=N\), \(B=Z\), \(C=Q\)

\((i)\) Associative of Union

\((ii)\) Associativity of intersection

\((iii)\) Distributive of Union over intersection

\((iv)\) Distributive of intersection over union

Solution:

\((i)\) Associative of Union

\((A\cup B)\cup C=A\cup (B\cup C)\) is Associative of Union

\(\text{L.H.S.}=(A\cup B)\cup C\)

\(\ \ \ \ \ \ \ \ \ \ \ =[N\)\(\cup\)\(Z]\)\(\cup\)\(Q\)

\(\ \ \ \ \ \ \ \ \ \ \ =Z\)\(\cup\)\(Q\)

\(\ \ \ \ \ \ \ \ \ \ \ =Q\)

\(\text{R.H.S.}=A\cup (B\cup C)\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cup\)\([Z\)\(\cup\)\(Q]\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cup\)\(Q\)

\(\ \ \ \ \ \ \ \ \ \ \ =Q\)

Hence, \(\text{L.H.S.}=\text{R.H.S.}\)

\((ii)\) Associativity of intersection

\((A\cap B)\cap C=A\cap (B\cap C)\) is Associative of Intersection

\(\text{L.H.S.}=(A\cap B)\cap C\)

\(\ \ \ \ \ \ \ \ \ \ \ =[N\)\(\cap\)\(Z]\)\(\cap\)\(Q\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cap\)\(Z\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)

\(\text{R.H.S.}=A\cap (B\cap C)\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cap\)\([Z\)\(\cap\)\(Q]\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cap\)\(Z\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)

Hence, \(\text{L.H.S.}=\text{R.H.S.}\)

\((iii)\) Distributive of Union over intersection

\(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\) is Distributive of Union over intersection

\(\text{L.H.S.}=A \cup (B \cap C)\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cup\)\([Z\)\(\cap\)\(Q\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{\}\)\(\cup\)\(Z\)

\(\ \ \ \ \ \ \ \ \ \ \ =Z\)

\(\text{R.H.S.}=(A \cup B) \cap (A \cup C)\)

\(\ \ \ \ \ \ \ \ \ \ \ =[N\)\(\cup\)\(Z]\)\(\cap\)\([N\)\(\cup\)\(Q]\)

\(\ \ \ \ \ \ \ \ \ \ \ =Z\)\(\cap\)\(Q\)

\(\ \ \ \ \ \ \ \ \ \ \ =Z\)

Hence, \(\text{L.H.S.}=\text{R.H.S.}\)

\((iv)\) Distributive of intersection over union

\(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\) is Distributive of intersection over union

\(\text{L.H.S.}=A \cap (B \cup C)\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cap\)\([Z\)\(\cup\)\(Q]\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cap\)\(Q\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)

\(\text{R.H.S.}=(A \cap B) \cup (A \cap C)\)

\(\ \ \ \ \ \ \ \ \ \ \ =[N\)\(\cap\)\(Z]\)\(\cup\)\([N\)\(\cap\)\(Q]\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)\(\cup\)\(N\)

\(\ \ \ \ \ \ \ \ \ \ \ =N\)

Hence, \(\text{L.H.S.}=\text{R.H.S.}\)


Explanation:

\(\text{Super Set}\)\(\ \cup \ \)\(\text{Sub Set}\)\(\ =\ \)\(\text{Super Set}\)

\(\text{Super Set}\)\(\ \cap \ \)\(\text{Sub Set}\)\(\ =\ \)\(\text{Sub Set}\)

\(Q\) is super set of \(Z\), and \(Z\) is super set of \(N\)

Leave a comment