Note: This is the Solution of exercise 1.2 from newly published book by PCTB (Punjab Curriculum and Textbook Board, Pakistan) for new 9th session 2025 Onward.
Exercise 1.2
Question # 01: Rationalize the denominator of following:
\((i)\) \(\quad \large{\frac{13}{4+\sqrt{3}}} \)
\((ii)\) \(\quad \large{\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}} \)
\((iii)\) \(\quad \large{\frac{\sqrt{2}-1}{\sqrt{5}}}\)
\((iv)\) \(\quad \large{\frac{6-4\sqrt{2}}{6+4\sqrt{2}}} \)
\((v)\) \(\quad \large{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}} \)
\((vi)\) \( \quad \large{\frac{4\sqrt{3}}{\sqrt{7}+\sqrt{5}}} \)
Question 2: Simplify the following:
\((i)\) \(\quad \large{\left(\frac{81}{16}\right)^{-\frac{3}{4}}} \)
\((iii)\) \(\quad ( 0.027)^{-\frac{1}{3}} \)
\((iv)\) \(\quad \large{\sqrt[7]{\frac{x^{14} \times y^{21} \times z^{35}}{y^{14} \times z^{7}}}} \)
\((v)\) \(\quad \large{\frac{5.( 25)^{n+1} -25.( 5)^{2n}}{5.( 5)^{2n+3} -( 25)^{n+1}} }\)
\((vi)\) \(\quad \large{\frac{( 16)^{x+1} +20\left( 4^{2x}\right)}{2^{x-3} \times 8^{x+2}}} \)
\((vii)\) \(\quad ( 64)^{-\frac{2}{3}} \div ( 9)^{-\frac{3}{2}} \)
\((viii)\) \(\quad \large{\frac{3^{n} \times 9^{n+1}}{3^{n-1} \times 9^{n-1}}} \)
Question 3: If \(x=3+\sqrt{8}\) then find the value of:
\((i)\) \(\quad x+\large{\frac{1}{x}} \)
\((ii)\) \(\quad x-\large{\frac{1}{x}} \)
\((iii)\) \(\quad x^{2} +\large{\frac{1}{x^{2}}} \)
\((iv)\) \(\quad x^{2} -\large{\frac{1}{x^{2}}} \)