Class 9th math 4.2 solution english PCTB

Question 2: Factorize each of the following expresssions:

\((i)\) \(\;\) \( (x+1)(x+2)(x+3)(x+4)+1\)

Solution:

\(\ \ \ \ ( x+1)( x+2)( x+3)( x+4) +1 \)

\(=[( x+1)( x+4)][( x+3)( x+2)] +1\)

\(=[ x( x+4) +1( x+4)][ x( x+2)\ +\ \)\(3( x+2)] +1\)

\(=[ x^{2} +4x+x+4][ x^{2} +2x+3x+6]+1\)

\(=[ x^{2} +5x+4][ x^{2} +5x+6] +1\)

Let \(\; y=x^2+5x\), we have

\(=[ y+4][ y+6] +1\)

\(=y( y+6) +4( y+6) +1\)

\(=y^{2} +6y+4y+24+1\)

\(=y^{2} +10y+25\)

\(=y^{2} +5y+5y+25\)

\(=y( y+5) +5( y+5)\)

\(=( y+5)( y+5)\)

\(=( y+5)^{2}\)

\(=\left( x^{2} +5x+5\right)^{2}\)

——– Alternate Method ——–

\(\ \ \ \ ( x+1)( x+2)( x+3)( x+4) +1 \)

\(=[( x+1)( x+4)][( x+3)( x+2)] +1\)

\(=[ x( x+4) +1( x+4)][ x( x+2)\ +\ \)\(3( x+2)] +1\)

\(=[ x^{2} +4x+x+4][ x^{2} +2x+3x+6]+1\)

\(=[ x^{2} +5x+4][ x^{2} +5x+6] +1\)

Let \(\; y=x^2+5x\), we have

\(=[ y+4][ y+6] +1\)

\(=y( y+6) +4( y+6) +1\)

\(=y^{2} +6y+4y+24+1\)

\(=y^{2} +10y+25\)

\(=y^{2} +2(y)(5)+(5)^2\)

\(=( y+5)^{2}\)

\(=\left( x^{2} +5x+5\right)^{2}\)

Leave a comment