Class 9th math 3.2 solution english PCTB

Question 5: Let \(U=\{a,b,c,d,e,f,g,h,i,j\}\), \(A=\{a,b,c,d,g,h\}\), \(B=\{c,d,e,f,j\}\), Verify De Morgan’s Laws for these sets. Draw Venn diagram

Solution:

De Morgan’s Laws:

\( (i)\;\) \({(A\cup B)}’={A}’\cap {B}’ \)

\( (ii)\;\) \({(A\cap B)}’={A}’\cup {B}’ \)


\( (i)\;\) \({(A\cup B)}’={A}’\cap {B}’ \)

\(A\cup B=\{a,b,c,d,g,h\}\cup \{c,d,e,f,j\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{a,b,c,d,e,f,g,h,j\}\)

\(\text{L.H.S.}={(A\cup B)}’\)

\(\ \ \ \ \ \ \ \ \ \ \ =U-(A\cup B)\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{a,b,c,d,e,f,g,h,i,j\}\)\(\ -\ \)\(\{a,b,c,d,e,f,g,h,j\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{i\}\)

\(\text{R.H.S.}={A}’\cap {B}’\)

\({A}’=U-A\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{a,b,c,d,e,f,g,h,i,j\}\)\(\ -\ \)\(\{a,b,c,d,g,h\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{e,f,i,j\}\)

\({B}’=U-B\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{a,b,c,d,e,f,g,h,i,j\}\)\(\ -\ \)\(\{c,d,e,f,j\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{a,b,g,h,i\}\)

\(\text{R.H.S.}={A}’\cap {B}’\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{e,f,i,j\}\)\(\cap\)\(\{a,b,g,h,i\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{i\}\)

Therefore, \({(A\cup B)}’={A}’\cap {B}’ \)


\( (ii)\;\) \({(A\cap B)}’={A}’\cup {B}’ \)

\(A\cap B=\{a,b,c,d,g,h\}\cap \{c,d,e,f,j\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{c,d\}\)

\(\text{L.H.S.}={(A\cap B)}’\)

\(\ \ \ \ \ \ \ \ \ \ \ =U-(A\cap B)\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{a,b,c,d,e,f,g,h,i,j\}\)\(\ -\ \)\(\{c,d\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{a,b,e,f,g,h,i,j\}\)

\(\text{R.H.S.}={A}’\cup {B}’\)

\({A}’=U-A\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{a,b,c,d,e,f,g,h,i,j\}\)\(\ -\ \)\(\{a,b,c,d,g,h\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{e,f,i,j\}\)

\({B}’=U-B\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{a,b,c,d,e,f,g,h,i,j\}\)\(\ -\ \)\(\{c,d,e,f,j\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\ \)\(\{a,b,g,h,i\}\)

\(\text{R.H.S.}={A}’\cup {B}’\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{e,f,i,j\}\)\(\cup\)\(\{a,b,g,h,i\}\)

\(\ \ \ \ \ \ \ \ \ \ \ =\{a,b,e,f,g,h,i,j\}\)

Therefore, \({(A\cap B)}’={A}’\cup {B}’ \)

Leave a comment