Class 9th math Review Exercise 6 solution english PCTB

Note: This is the Solution of review exercise 6 from newly published book by PCTB (Punjab Curriculum and Textbook Board, Pakistan) for new 9th session 2025 Onward.

Review Exercise 6
Question # 01: Four option are given against each statement. Encircle the correct option.

\((i)\) The value of \(\tan^{-1} 2\) in radians is:

\( a) \quad \) \( \frac{\pi}{2} \)

\( b) \quad \) \( \frac{3\pi}{2}\)

\(c) \quad \) \( 0.463\pi\)

\( d) \quad \) \( 0.4636\)

\( \text{Answer/Explanation}\)

\((ii)\) In a right triangle, the hypotenuse is \(13 \) units and one of the angle is \(\theta=30^\circ\). The length of the opposite side is:

\( a) \quad \) \( 6.5\) units

\( b) \quad \) \( 7.5\) units

\(c) \quad \) \(6 \) units

\( d) \quad \) \(5 \) units

\( \text{Answer/Explanation}\)

\((iii)\) A person standing \(50\ m\) away from a building sees the top of the building at an angle of elevation of \(45^\circ\). Height of the building is:

\( a) \quad \) \( 50\) m

\( b) \quad \) \(25 \) m

\(c) \quad \) \(35 \) m

\( d) \quad \) \( 70\) m

\( \text{Answer/Explanation}\)

\((iv)\)\(\quad\)\(\sec^2 \theta -\tan^2\theta =\)_________.

\( a) \quad \) \(\sin^2 \theta\)

\( b) \quad \) \(1\)

\(c) \quad \) \(\cos^2 \theta\)

\( d) \quad \) \(\cot^2 \theta\)

\( \text{Answer/Explanation}\)

\((v)\) \(\quad\)If \(\sin \theta =\frac{3}{5}\) is an acute angle, \(\cos^2 \theta=\)____________.

\( a) \quad \) \(\frac{7}{25}\)

\( b) \quad \) \(\frac{24}{25}\)

\(c) \quad \) \(\frac{16}{25}\)

\( d) \quad \) \(\frac{4}{25}\)

\( \text{Answer/Explanation}\)

\((vi)\) \(\frac{5\pi}{24}\) rad \(=\) __________ degrees.

\( a) \quad \) \(30^\circ\)

\( b) \quad \) \(37.5^\circ\)

\(c) \quad \) \(45^\circ\)

\( d) \quad \) \(52.5^\circ\)

\( \text{Answer/Explanation}\)

\((vii)\)\(\quad\)\(292.5^\circ=\)___________ rad.

\( a) \quad \) \(\frac{17\pi}{6}\)

\( b) \quad \) \(\frac{17\pi}{4}\)

\(c) \quad \) \(1.6\pi\)

\( d) \quad \) \(1.625\pi\)

\( \text{Answer/Explanation}\)

\((viii)\)\(\quad\)Which of the following is a valid identity?

\( a) \quad \) \( \cos(\frac{\pi}{2}-\theta)=\sin \theta\)

\( b) \quad \) \( \cos(\frac{\pi}{2}-\theta)=\cos \theta\)

\(c) \quad \) \( \cos(\frac{\pi}{2}-\theta)=\sec \theta\)

\( d) \quad \) \( \cos(\frac{\pi}{2}-\theta)=\csc \theta\)

\( \text{Answer/Explanation}\)

\((ix)\)\(\quad\)\(\sin 60^\circ=\)__________.

\( a) \quad \) \(1\)

\( b) \quad \) \(\frac{1}{2}\)

\(c) \quad \) \(\sqrt{(3)^2}\)

\( d) \quad \) \(\frac{\sqrt{3}}{2}\)

\( \text{Answer/Explanation}\)

\((x)\) \(\quad\)\(\cos^2 100\pi+\sin^2 100\pi=\)____________:

\( a) \quad \) \(1\)

\( b) \quad \) \(2\)

\(c) \quad \) \(3\)

\( d) \quad \) \(4\)

\( \text{Answer/Explanation}\)

Question 2: Convert the given angle from:
\(\small{(a)}\) \(\quad\) degrees to radians giving answer in terms of \(\small{\pi}\)

\((i)\) \(\quad\) \(255^\circ\)

\((ii)\) \(\quad\) \(75^\circ{45}’ \)

\((iii)\) \(\quad\) \(142.5^\circ\)

\(\small{(b)}\) \(\quad\) radians to degrees giving answer in degree and minutes.

\((i)\) \(\quad\) \(\frac{17\pi}{24}\)

\((ii)\) \(\quad\) \(\frac{7\pi}{12} \)

\((iii)\) \(\quad\) \(\frac{11\pi}{16}\)

Question 3: Prove the following trigonometric identities:

\((i)\) \(\quad\) \(\large{\frac{\sin \theta}{1-\cos \theta}}=\large{\frac{1+\cos \theta}{\sin \theta}}\)

\((ii)\) \(\quad\) \(\sin \theta (\csc \theta -\sin \theta)=\large{\frac{1}{\sec^2 \theta}}\)

\((iii)\) \(\quad\) \(\large{\frac{\csc \theta -\sec \theta}{\csc \theta +\sec \theta}}=\large{\frac{1-\cos \theta}{1+\cos \theta} }\)

\((iv)\) \(\quad\) \(\tan \theta+\cot \theta=\large{\frac{1}{\sin \theta \cos \theta }}\)

\((v)\) \(\quad\) \(\large{\frac{\cos \theta+\sin \theta}{\cos \theta -\sin \theta }}+\large{\frac{\cos \theta -\sin \theta}{\cos \theta +\sin \theta}}=\large{\frac{2}{1-2\sin^2 \theta }}\)

\((vi)\) \(\quad\) \(\large{\frac{1+\cos \theta}{1-\cos \theta }}=(\csc \theta +\cot \theta)^2\)

Question 4: If \(\small{\tan\theta =\frac{3}{\sqrt{2}}}\) then find the remaining trigonometric ratios when \(\theta \) lies in first quadrant.
Question 5: From a point on the ground, the angle of elevation to the top of a \(\small{30\ m}\) high building is \(\small{28^\circ}\). How far is the point from the base of the building?
Question 6: A ladder leaning against a wall forms an angle of \(\small{65^\circ}\) with the ground. If the ladder is \(\small{10\ m}\) long, how high does it reach on the wall?

Leave a comment