Class 9th math Review Exercise 4 solution english PCTB

Note: This is the Solution of review exercise 4 from newly published book by PCTB (Punjab Curriculum and Textbook Board, Pakistan) for new 9th session 2025 Onward.

Review Exercise 4
Question # 01: Four option are given against each statement. Encircle the correct option.

\((i)\) The factorization of \(12x+36\) is:

\( a) \quad \) \( 12(x+3) \)

\( b) \quad \) \( 12(3x)\)

\(c) \quad \) \( 12(3x+1)\)

\( d) \quad \) \( x(12+36x)\)

\( \text{Answer/Explanation}\)

\((ii)\) The factors of \(4x^2-12y+9\) are:

\( a) \quad \) \( (2x+3)^2\)

\( b) \quad \) \( (2x-3)^2\)

\(c) \quad \) \((2x-3)(2x+3) \)

\( d) \quad \) \((2+3x)(2-3x)^2 \)

\( \text{Answer/Explanation}\)

\((iii)\) The HCF of \(a^3b^3\) and \(ab^2\) is:

\( a) \quad \) \( a^3b^3\)

\( b) \quad \) \(ab^2 \)

\(c) \quad \) \(a^4b^5 \)

\( d) \quad \) \( a^2b\)

\( \text{Answer/Explanation}\)

\((iv)\)\(\quad\)The LCM of \(16x^2\),\(4x\) and \(30xy\) is:

\( a) \quad \) \(480x^3y \)

\( b) \quad \) \( 240xy\)

\(c) \quad \) \( 240x^2y\)

\( d) \quad \) \( 120x^4y)\)

\( \text{Answer/Explanation}\)

\((v)\) \(\quad\)Product of LCM and HCF = ________ of two polynomials.

\( a) \quad \) Sum

\( b) \quad \) Difference

\(c) \quad \) Product

\( d) \quad \) Quotient

\( \text{Answer/Explanation}\)

\((vi)\) The square root of \(x^2-6x+9\) is:

\( a) \quad \) \( \pm (x-3)\)

\( b) \quad \) \( \pm (x+3)\)

\(c) \quad \) \( x-3\)

\( d) \quad \) \( x+3\)

\( \text{Answer/Explanation}\)

\((vii)\)\(\quad\)If \(A=\{1,2,3,4\} \) and \(B=\{x,y,z\}\), then cartesian product of \(A\) and \(B\) contains exactly _______ elements.

\( a) \quad \) \(13\)

\( b) \quad \) \(12\)

\(c) \quad \) \(10\)

\( d) \quad \) \(6\)

\( \text{Answer/Explanation}\)

\((viii)\)\(\quad\)The LCM of \((a-b)^2\) and \((a-b)^4\) is:

\( a) \quad \) \( (a-b)^2\)

\( b) \quad \) \( (a-b)^3\)

\(c) \quad \) \( (a-b)^4\)

\( d) \quad \) \( (a-b)^6\)

\( \text{Answer/Explanation}\)

\((ix)\)\(\quad\)Cubic polynomial has degree:

\( a) \quad \) \(1\)

\( b) \quad \) \(2\)

\(c) \quad \) \(3\)

\( d) \quad \) \(4\)

\( \text{Answer/Explanation}\)

\((x)\) \(\quad\)One of the factors of \(x^3-27\) is:

\( a) \quad \) \(x-3\) is injective

\( b) \quad \) \(x+3 \) is surjective

\(c) \quad \) \(x^2-3x+9\) is bijective

\( d) \quad \) Both \(a\) and \(c\)

\( \text{Answer/Explanation}\)

Question 2: Factorize the following expressions:

\((i)\) \(\quad\) \(4x^3+18x^2-12x\)

\((ii)\) \(\quad\) \(x^3+64y^3 \)

\((iii)\) \(\quad\) \(x^3y^3-8\)

\((iv)\) \(\quad\) \(-x^2-23x-60 \)

\((v)\) \(\quad\) \(2x^2+7x+3 \)

\((vi)\) \(\quad\) \(\{x^4+64 \)

\((vii)\) \(\quad\) \(x^4+2x^2+9\)

\((viii)\) \(\quad\) \((x+3)(x+4)(x+5)(x+6)-360 \)

\((ix)\) \(\quad\) \((x^2+6x+3)(x^2+6x-9)+36 \)

Question 3: Find LCM and HCF by prime factorization method:

\((i)\) \(\quad\) \(4x^3+12x^2,8x^2+16x \)

\((ii)\) \(\quad\) \(x^3+3x^2-4x,x^2-x-6 \)

\((iii)\) \(\quad\) \(x^2+8x+16,x^2-16 \)

\((iv)\) \(\quad\) \(x^3-9x,x^2-4x+3 \)

Question 4: Find square root by factorization and division method of the expression \(16x^4+8x^2+1\):
Question 5: Huria is analyzing the total cost of her loan, modeled by the expression \(C(x)=x^2-8x+15\), where \(\small{x}\) represents the number of years. What is the optimal repayment period for Huria’s loan?

Leave a comment